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CONSPECTUS: Just as complete molecules have no boundaries and have
“fuzzy” electron density clouds approaching zero density exponentially at
large distances from the nearest nucleus, a physically justified choice for
electron density fragments exhibits similar behavior. Whereas fuzzy electron
densities, just as any fuzzy object, such as a thicker cloud on a foggy day, do
not lend themselves to easy visualization, one may partially overcome this by
using isocontours. Whereas a faithful representation of the complete fuzzy
density would need infinitely many such isocontours, nevertheless, by
choosing a selected few, one can still obtain a limited pictorial representation.
Clearly, such images are of limited value, and one better relies on more
complete mathematical representations, using, for example, density matrices
of fuzzy fragment densities. A fuzzy density fragmentation can be obtained in
an exactly additive way, using the output from any of the common quantum chemical computational techniques, such as
Hartree−Fock, MP2, and various density functional approaches.
Such “fuzzy” electron density fragments properly represented have proven to be useful in a rather wide range of applications, for
example, (a) using them as additive building blocks leading to efficient linear scaling macromolecular quantum chemistry
computational techniques, (b) the study of quantum chemical functional groups, (c) using approximate fuzzy fragment
information as allowed by the holographic electron density theorem, (d) the study of correlations between local shape and
activity, including through-bond and through-space components of interactions between parts of molecules and relations
between local molecular shape and substituent effects, (e) using them as tools of density matrix extrapolation in conformational
changes, (f) physically valid averaging and statistical distribution of several local electron densities of common stoichiometry,
useful in electron density databank mining, for example, in medicinal drug design, and (g) tools for combinatorial quantum
chemistry approaches using fuzzy fragment databanks and rapid construction of a large number of approximate electron densities
for large sets of related molecules, relevant in theoretical molecular and nanostructure design.

■ INTRODUCTION

A classically motivated “cutting” of an electron density cloud
into pieces by sharp boundaries generates fragments, which are
fundamentally different from the complete molecules. For
example, at the cut, there is a surface with discontinuous
electron density, and the natural, exponential decay of the
density in real molecules as the distance increases from the
nearest nucleus is drastically violated. Besides, such sharp
boundaries are inherently non-quantum-mechanical: the
uncertainty relation does not favor sharp features, let alone
such a discontinuity. If one attempts to combine such
fragments from different molecules to form a model for a
larger system, a perfect match is strictly impossible, and
between such fragments either zero density regions (100% local
error) or an approximate doubling of density occurs.
It is more advantageous to obtain a fragmentation that results

in fragments following an approximately exponential decay with
distance, similarly to complete molecules. This implies a fuzzy
fragmentation approach. If such fuzzy fragments are used to
reunite the complete molecule, they will interpenetrate one

another, just like smaller clouds interpenetrate each other if
some wind unites them. A large electron density cloud can be
taken apart by pulling out several smaller clouds from it, where
none of these smaller fuzzy clouds has a boundary, and when
they are united again, each, having approximately exponential
decay, will have some, possibly small but nonzero, contribution
to any of the locations within the large cloud. Although this
interpenetration might appear as a complicating aspect, in fact,
this approach also allows exact additivity of the fuzzy fragment
clouds; that is, when they are united, the original cloud of the
complete fuzzy electron density of the original molecule is
exactly reproduced. If fuzzy fragments from different molecules
are combined, the fuzziness ensures that the errors can never be

Special Issue: Beyond QM/MM: Fragment Quantum Mechanical
Methods

Received: March 11, 2014
Published: July 14, 2014

Article

pubs.acs.org/accounts

© 2014 American Chemical Society 2821 dx.doi.org/10.1021/ar5001154 | Acc. Chem. Res. 2014, 47, 2821−2827

pubs.acs.org/accounts


even close to those of fragments with boundaries; in fact, the
errors can be reduced below any positive limit.
By a suitable choice of the fragmentation method, each fuzzy

fragment density can be treated the same way as the complete
molecular electron densities.
After a brief review of the additive fuzzy density

fragmentation (AFDF) methods, several of the wide-ranging
applications of such fuzzy electron density fragments will be
outlined.

■ ADDITIVE FUZZY DENSITY FRAGMENTATION
(AFDF) METHODS

A forerunner of all quantum chemistry fragmentation
approaches is the linear combination of atomic orbitals
(LCAO) approach of Mulliken,1−4 where the molecular wave
function is built from linear combinations of atomic orbitals.
Both the AO and the MO functions are “fuzzy”, they do not
have boundaries. A point r in space does not belong exclusively
to any of the atomic orbitals. Point r belongs to various degrees
to each of the AOs; hence, each AO is a fuzzy set as defined by
Zadeh.5,6 Mulliken’s approach is also an early application of
“local Hamiltonians” (atomic Hamiltonians), followed by a
combination of local solutions (AOs), and “readjustment” by
determination of the linear coefficients in the Hartree−Fock
method.
Using density matrices,7−14 one can implement a similar

“fuzzy set” approach. An early summary is given in the context
of quantum chemical functional groups.15 The additive fuzzy
density fragmentation (AFDF) method has roots in Mulliken’s
population analysis. The Mulliken−Mezey fragmentation15 is
the simplest within Hartree−Fock but is applicable to other
quantum chemistry methodologies. For a molecule M of
nuclear configuration K and AO basis functions φi(r,K) (i = 1,
2, ..., n), and n × n dimensional density matrix P(φ(K)), the
electronic density ρ(r,K) is

∑ ∑ρ φ φ φ=
= =
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i
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The “anchor” points of the fragments are the nuclei. The set of
nuclei of the molecule M are classified into m mutually
exclusive families
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The Mulliken−Mezey fuzzy fragmentation defines the fragment
density matrix as

φ φ= +P m i w m j w P( (K)) [ ( ) ( ) ] ( (K))ij
k

k ij k ji ij (4)

where the wij and wji weighting factors fulfill

+ = >w w w w1, , 0ij ji ij ji (5)

leading to exact fragment additivity. The choice of wij = wji = 0.5
has been used in most applications, as the population analysis
scheme of Mulliken without integration.

These fragment density matrices Pk(φ(K)) are additive,
generating exactly the original density matrix:

∑φ φ=
=

P P( (K)) ( (K))
k

m
k

1 (6)

With the fragment density matrix elements Pij
k(φ(K)), the kth

additive fuzzy density fragment is
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The fuzzy density fragments ρk(r,K) are also exactly additive:

∑ρ ρ=
=

r r( , K) ( , K)
k
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k

1 (8)

The fuzzy density fragments are analogous to complete
molecules; hence all tools of molecular electron density analysis
are applicable to them.

■ FUZZY ELECTRON DENSITY FRAGMENTS IN
EFFICIENT LINEAR SCALING MACROMOLECULAR
QUANTUM CHEMISTRY COMPUTATIONAL
TECHNIQUES

An important special application of these fuzzy fragments is in
linear scaling macromolecular quantum chemistry meth-
ods.16−35 For a macromolecule M, the nuclear families, eq 2,
are chosen, and for each nuclear family f k a smaller, artificial
“parent molecule” Mk is constructed. In each Mk, the family f k
has the same local arrangement and surroundings within some
d distance as in the macromolecule M; often, several additional
nuclear families f k′, surrounding f k are included. By calculation
of the density and performance of a fuzzy density fragmentation
for each Mk, the central fuzzy density fragment ρk(r,K) will
include “half” of the interactions with all other fuzzy density
fragments Mk within the distance d. If this is carried out for
each nuclear family f k of M, the fuzzy fragments

ρ ρ ρ ρr r r r( , K), ( , K), ..., ( , K), ..., ( , K)k m1 2
(9)

are obtained. These turn out to be excellent approximations to
the “true” fuzzy fragments one could obtain from the
macromolecule M directly, since all interactions are reproduced
for each fragment within a distance d; hence the accuracy is
dependent only on d, the size of the parent molecules. Due to
the rapid decay of electron density with distance, a 6 Å choice
for d already provides excellent part-per-million accuracy, when
fuzzy fragment HF is compared with traditional HF energy for
the protein crambin,25 and the accuracy can be further
improved using larger d, and the error can be reduced well
below 1 kcal/mol using larger d size parameter.25

By simply adding these fuzzy fragment densities, to locations
determined by their nuclear families, we obtain the total
electron density ρ(r,K) of the macromolecule M. Also, by
combining the fragment density matrices from each parent
molecule, an excellent approximation to the macromolecular
density matrix can be obtained, which allows the calculation of
a whole range of macromolecular properties.
For a given d, the process scales linearly with the

macromolecular size, proportionally with the number of nuclear
families (the number of parent molecules).
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The two main macromolecular AFDF methods are the
numerical electron density assembler MEDLA16−20 (molecular
electron density “loge” assembler, or molecular electron density
“lego” assembler) based on numerically stored electron
densities and the more efficient density matrix approach
ADMA21−35 (adjustable density matrix assembler), both with a
large number of ab initio quality applications to proteins,
including bovine insulin,18 HIV-1 protease,19 hemoglobin,27

and other large systems,17 well over 1000 atoms.
The ADMA density matrix approach21 is also suitable for

macromolecular similarity studies20 and for the computation of
macromolecular forces.22 Some methodological develop-
ments26−29 have contributed to the recognition that in the
crystallographic structure refinement process the replacement
of spherical Gaussian density representations with actual fuzzy
density fragments evidently provides better accuracy.30 Another
application, the use of precomputed fuzzy fragments in a
“combinatorial quantum chemistry” approach for the quick
generation of a large number of approximate macromolecular
densities has also been advocated.31−34

Whereas there are limitations on fragment transferability,
adjustability, and additivity,35 as set by the Hohenberg−Kohn
theorem36,37 and by its extension, the holographic electron
density theorem,38−40 still, it is possible to obtain better than 1
kcal/mol accuracy by the linear scaling fuzzy fragment approach
for proteins relative to traditional and expensive nonfragment
quantum chemistry methods.25

■ QUANTUM CHEMICAL FUNCTIONAL GROUPS
DEFINED BY FUZZY ELECTRON DENSITY
FRAGMENTS

The approach uses some analogies with a pair of interacting
molecules, relying on molecular isodensity contour surfaces,
MIDCOs, defined for threshold value a as

ρ= =G a r ar( , K) { : ( , K) } (11)

If the interaction of the two molecules is weak, there must
exist some MIDCO for each that surrounds all the nuclei of one
molecule but none of the nuclei of the other molecule,
indicating that some “autonomy” of each molecule is preserved.
If the interaction becomes stronger, a major rearrangement of
the electron density may occur, and after that the condition of
separating isodensity contours may no longer hold.
The same principle can be applied for various parts of a

single molecule. If some subset of nuclei is separated by some
isodensity contour from the other nuclei, one may regard this
subset of nuclei and an associated fuzzy fragment of the
electron density cloud to possess some “limited autonomy”
within the molecule, a condition that typically holds for most
functional groups. The presence of a separating isodensity
contour is taken as a condition for the presence of a “quantum
chemical functional group”.15,32

The fuzzy fragment approach allows the direct study of
functional groups, and their shape comparisons often reveal
important trends.15,32

■ APPLICATIONS OF THE HOLOGRAPHIC ELECTRON
DENSITY THEOREM TO FUZZY FRAGMENTS AND
PROPERTY PREDICTION

The fundamental theorem of density functional theory, the
Hohenberg−Kohn theorem,36 states that the ground state
energy E, and the ground state wave function Ψ (hence,

essentially all ground state properties of the molecule) are
uniquely determined by the nondegenerate ground state
electron density ρ(r,K). Riess and Munch derived an important
local version of this theorem valid for artificial, bounded, and
finite Coulomb systems, although, as they have correctly
emphasized, it was not applicable for real molecules, which
cannot have boundaries.37 Relying on both of these results, a
statement stronger than the Hohenberg−Kohn theorem was
proven using a four-dimensional transformation and compacti-
fication technique, leading to the holographic electron density
theorem,38 “Any nonzero volume piece ρd(r,K) of the
nondegenerate ground state electron density fully determines
the ground state electron density ρ(r,K) of the entire,
boundaryless molecular system.”
The holographic electron density theorem has important role

in local shape analysis,38 in drug design,23,39 in toxicological risk
assessment,39 and in the prediction of “latent properties”, for
example, excited state properties not exhibited in the ground
electronic ground state,39,40 and in a wide range of additional
applications by various authors.41−74,75−86

An extension of the fragment principle is the so-called
universal molecule84,86 model that is an “anti-quantized”
abstract structure where all variables are considered continuous.
Some of these variables take physically valid values only by
quantization, for example, becoming integers, such as a formally
continuous nuclear charge variable. In the universal molecule
model a (physically impossible) continuous transformation
between the molecules of CO and N2 yields, among other
results, upper bounds for some energy expectation values.86

■ THE STUDY OF CORRELATIONS BETWEEN LOCAL
SHAPE AND ACTIVITY

Using fuzzy fragments, we can study the correlations between
local shape and activity, including biochemical activities,
important in pharmaceutical applications.23,39,87−91 The mo-
lecular electron density shape analysis methods92−97 originally
developed for complete molecules are fully applicable to fuzzy
fragments, useful in pharmaceutical drug design.95

Interactions within Molecules: Through-Bond and
Through-Space Effects

The local shape analysis of molecular fragments provides a
unique way to study of the relative roles of through-bond and
through-space components of interactions within molecules,
where the through-bond components appear to dominate in
most, but not all, situations.87

A special case involves a systematic deviation from perfect
periodicity in some polymers, which can be analyzed in terms
of local features.90

Relations between Local Shape and Substituent Effects

Numerical shape similarity measures provide quantitative
relations between local molecular shape variations and the
type and strength of various substituent effects, confirming
some of the expected experimental trends but also pointing out
some novel aspects.88

■ INTERPOLATION, EXTRAPOLATION, PHYSICALLY
VALID AVERAGING AND STATISTICAL
DISTRIBUTION OF LOCAL ELECTRON DENSITIES

Comparisons of electron densities for changed nuclear
arrangements, for example, along reaction paths or conforma-
tional domains on potential surfaces, often reveal important
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trends.98−102 Yet, a direct averaging of electron densities of
molecules with the same nuclei but with differing nuclear
locations leads to false maxima; hence a transformation to a
common nuclear framework is needed.
By suitable interpolation or extrapolation methods, the

electron densities can be transformed to a common nuclear
framework. Among density transformation methods,103−112 the
approach based on Löwdin’s symmetric orthogonaliza-
tion,103,104 also used by Massa, Huang, and Karle105,106 for
crystallography applications, is the most versatile. The Löw-
din−inverse Löwdin (LIL) transformation, involving density
matrix pre- and postmultiplication by the 1/2 power of the
overlap matrix in one conformation and repeating this
procedure with the −1/2 power of the overlap matrix at a
different conformation, achieves a good, approximate density
matrix extrapolation. The level of fulfillment of the
idempotency condition for approximate density matrices, for
example, an ADMA macromolecular density matrix, is not
affected by LIL; hence, an efficient conformational search can
be implemented even for macromolecules.112

Each electron density can be transformed to a common
nuclear geometry, and then their average can be obtained by
simply superposing them; the nuclear locations now exactly
agree. Similarly, higher statistical moments, such as standard
deviation, skewness, or kurtosis can be obtained, and by “data-
mining” in large electron density databanks, important trends
can be deduced, useful in pharmaceutical molecule design.

■ COMBINATORIAL QUANTUM CHEMISTRY
APPROACHES IN THEORETICAL MOLECULE AND
NANOSTRUCTURE DESIGN

The fuzzy fragment methods have both computational and
interpretative advantages compared with alternative macro-
molecular linear scaling methods.113,114 Local properties are
often studied by orbital localization approaches;115,116 however,
fuzzy fragments can also be used to combine local properties.
By generating and storing many fragment density matrices for
various stoichiometries and nuclear arrangements, a combina-
torial quantum chemistry approach can rapidly produce models
for many molecules, analogously to synthetic combinatorial
approaches, as invented by Furka117−120 and further developed
by Darvas and co-workers.121,122

■ CONCLUDING REMARKS

The fuzzy electron density fragment approach has provided
input to both fundamental, theoretical analysis of molecules,
such as local shape interpretation and the holographic
properties of electron densities, and practical, computational
methods and applications in areas such as macromolecular
computations, pharmaceutical drug design, the interpretation of
substituent effects, and the study of through-bond, through-
space interactions.
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